Title Switching Nonparametric Regression Models for a Single Curve and Functional Data

نویسنده

  • Davor Cubranic
چکیده

July 11, 2013 Type Package Title Switching nonparametric regression models for a single curve and functional data Version 0.8-0 Date 2013-07-10 Author Camila de Souza and Davor Cubranic Maintainer Davor Cubranic Description Functions for estimating the parameters from the latent state process and the functions corresponding to the J states as proposed by De Souza and Heckman (2013). License GPL-3 Depends MASS, splines, fda Imports expm, HiddenMarkov NeedsCompilation no Repository CRAN Date/Publication 2013-07-11 07:32:58

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Package 'switchnpreg' Title Switching Nonparametric Regression Models for a Single Curve and Functional Data

February 20, 2015 Type Package Title Switching nonparametric regression models for a single curve and functional data Version 0.8-0 Date 2013-07-10 Author Camila de Souza and Davor Cubranic Maintainer Davor Cubranic Description Functions for estimating the parameters from the latent state process and the functions corresponding ...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Nonparametric Regression in R An Appendix to An R Companion to Applied Regression, Second Edition

In traditional parametric regression models, the functional form of the model is specified before the model is fit to data, and the object is to estimate the parameters of the model. In nonparametric regression, in contrast, the object is to estimate the regression function directly without specifying its form explicitly. In this appendix to Fox and Weisberg (2011), we describe how to fit sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013